猎豹彩票平台

设为首页|收藏|联系我们
当前位置:首页 > 学术交流 > 猎豹彩票平台学术年会 > 2015年 > 分会场交流 > 四分会场:建设用地保障与生态文明建设
 
四分会场:建设用地保障与生态文明建设

张文静:中国城市土地精明利用与城市规模的动态关系研究

发布时间:2015-12-14 15:38文章来源:猎豹彩票平台 打印


1.引言

土地是城市发展的载体,城市土地利用水平是新型城镇化成败的关键。我国在2014年发布的《国家新型城镇化规划(2014-2020)》及党的第十八次全国代表大会报告指出,我国城市发展已进入关键时期,在今后一个时期内有序推进可持续、以人为核心的城镇化。在日益稀缺的土地资源不能满足城市扩张需求的背景下,探索精明增长理论来指导城市土地的合理利用和城市的长远发展具有重要的现实意义。

精明增长理论在北美和欧洲非常盛行,其理论原则已被广泛采用并付诸实践,并收到良好的效果。在过去的几十年中,精明增长理论在我国也有广泛的讨论,梁鹤年、易华、刘海龙、王慎敏、张雯等人对精明增长的理念和内涵进行了分析,认为“精明增长”是一项涵盖多个层面城市发展原则的综合策略,并开始致力于这一领域的理论研究。对于精明增长和其与社会经济因素的关系也有广泛的讨论,主要包括:交通、城镇化和城市蔓延、土地利用等。

在城市发展方面,许多国家的学者围绕城市规模展开了广泛的研究。主要包括城市规模和经济发展、能源消费、城市规模的动态分布]、城市扩张[]、时空分异研究等。

总地看来,学术界对于城市规模和精明增长领域已进行了广泛的研究并已取得丰富的成果,已有的研究还存在以下不足:当前多数研究集中于土地集约利用,城市精明增长的评价或分析城市规模扩张的驱动因素,鲜少有研究涉及土地利用程度与城市规模的关系;目前尚未形成一个被广泛接受的城市土地利用程度的评价指标体系,且不同评价标准导致结果各异;对于城市土地利用进行评价时,对于其动态演变评价重视不够。已有文献多采用回归分析或相关分析方法来探讨城市土地利用与其他因素的静态关系而对于动态机制的研究较少,且我国城市土地利用与城市规模之间的关系尚不明确,这可能会导致相关领域缺乏足够的政策依据。

    鉴于此,本文首先在对已有的精明增长程度评价研究成果的基础上,通过统计方法筛选指标,并综合考虑数据的可获得性和指标的代表性,建立城市土地精明利用程度的评价指标体系,对于35个主要城市的土地精明利用程度进行了评价,然后采用格兰杰因果检验和脉冲响应分析方法分析了城市规模与城市土地精明利用程度之间的动态关系,旨在为我国下一发展阶段的城市规划和土地利用的相关政策制定提供定量基础。  

2.数据来源和方法

2.1 数据来源

 本文主要收集了城市级的数据(由于缺乏拉萨市的相关数据,本文所有的研究结果不包含这个地区)。本文研究对象是我国的35个主要城市,其中包括四个直辖市(北京,上海,天津和重庆),十五个副省级城市(哈尔滨,长春,沈阳,济南,杭州,广州,武汉,成都,西安,大连,青岛,宁波,厦门,深圳)和其他十六个省会城市(石家庄,太原,呼和浩特,合肥,福州,南昌,郑州,长沙,南宁,海口,贵阳,昆明,兰州,西宁,银川和乌鲁木齐)。各指标数据主要来自:2004-2013年的《中国人口和就业统计年鉴》,《中国城市统计年鉴》和《中国城市建设统计年鉴》。

2.2指标体系构建

城市规模主要包括经济,社会和生态三个方面的涵义,由于本文主要对城市土地利用进行分析,因此以土地规模来界定城市规模,衡量指标为城市建成区面积。城巿土地精明利用程度是一个综合的概念,根据精明增长原则以及紧凑城市,可持续城市的理论构建城市土地精明利用评价的指标体系来进行衡量。由于目前并不存在一个被广泛接受的评价指标体系,本文在对已有的精明增长程度评价研究成果的基础上,通过统计方法筛选指标,并综合考虑数据的可获得性和指标的代表性,得到如表2-1所示的城市土地精明利用程度的评价指标体系。

经济集约指数中,土地经济密度用城市经济总量和城市面积的比值表示,城市经济扩展系数用城市建设用地增长率与二、三产业产值增长率的比值表示,以衡量城市建设用地扩张与城市经济发展的动态关系。

社会支撑指数反映了城市土地利用的社会效果。这方面包括交通和生活质量,即反映城市生活的宜居程度。其中,建设用地扩展系数用建设用地增长率和城镇人口增长的比值表示,以衡量城市土地是否处于粗放利用模式。

生态指数反映了城市土地利用生态和谐的程度。这一维度上的区域土地利用生态效益是结合了环境绿化,城市污染情况等因素进行了综合考量。

表2-1 中国城市土地精明增长程度评价体系

目标层

准则层

指标层

方向

单位

城市土地精明利用程度(A)

经济集约指数B1)

土地经济密度C1

+

RMB10,000/km2

城市经济扩展系数C2

-

%

地均固定资产投资(C3)

+

$10000/km2

社会支撑指数 (B2)

人口密度(C4)

+

/km2

人均道路面积(C5)

+

m2

建设用地扩展标准系数C6

-

%

地均居民生活用电量C7

 

10,000kwh/km2

公共交通客运能力C8

+

10,000

城市建设用地占市区面积的比重C9

+

%

生态指数 (B3)

建成区绿化覆盖率C10

+

m2

一般工业固体废物综合利用率C11

+

%

生活垃圾无害化处理率C12

+

%

+、-分别表示正、负向影响指标

2.3指标权重的确定

指标权重对于评价区域土地精明增长模式有重要的影响,本文采用的是主、客观结合的赋权方法。先采用标准化变换法改进的熵值法计算出指标权重(w1),然后结合变异系数法的结果(w2),最后采取德尔菲法,根据专家评定的意见,以加权的形式得到指标的最终权重。

2.4评价分值的确定

本文采用加权综合指数法计算城市土地精明利用程度的分值。具体公式如下:

        (1)

式中: 表示某年度某城市的土地精明利用程度评价分值,表示每个指标的标准化值,为如前所述得到的权重,n 为评价指标的总个数。

2.5动态关系研究

   在城市土地精明利用程度评价的基础上,再运用面板数据的单位根检验,协整检验,格兰杰因果检验和脉冲响应函数对土地精明利用程度和城市规模的动态关系进行研究。

3.实证结果与分析

3.1中国城市土地精明利用程度评价结果

   根据上述方法和数据来源,得到2003-2012年中国35个城市土地精明利用程度评价结果,如表3-1所示。

表3-1 2003-2012年中国主要城市土地精明增长程度评价结果

城市

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

深圳

50.61

54.51

52.02

58.65

57.99

59.50

60.11

67.52

65.46

64.98

南昌

52.41

47.59

51.63

56.05

58.00

60.11

51.03

56.84

59.91

60.70

合肥

49.68

51.06

48.51

50.42

53.57

49.98

55.66

59.25

62.23

60.47

长沙

47.99

50.63

52.23

54.29

56.01

52.46

54.98

55.58

52.20

51.85

青岛

49.12

48.67

49.86

50.96

51.48

52.96

49.87

55.71

57.05

51.38

上海

43.09

41.14

41.90

49.67

49.91

53.69

55.82

57.44

58.39

58.89

广州

45.05

47.17

49.73

45.58

44.32

52.70

53.38

55.48

55.10

52.66

成都

43.60

43.02

43.62

44.58

49.54

51.30

50.53

59.82

55.41

55.74

杭州

45.49

46.69

47.55

47.70

49.17

49.81

52.22

51.29

51.98

52.70

沈阳

43.60

44.40

44.98

48.55

49.28

50.01

50.76

51.77

52.27

52.93

北京

43.48

44.55

45.37

46.75

47.33

47.21

50.88

52.35

52.14

54.37

大连

43.07

44.15

46.93

43.95

48.98

49.97

51.12

50.21

51.52

52.82

福州

46.71

46.44

46.16

48.04

48.69

48.89

50.58

48.95

49.22

48.05

厦门

44.17

43.77

44.99

48.79

46.92

48.74

49.33

49.43

51.54

53.09

南京

44.86

45.11

46.76

47.98

49.28

50.12

46.42

47.38

49.81

51.11

济南

46.30

46.39

46.84

45.22

45.36

45.78

46.42

45.56

49.43

49.45

宁波

41.38

42.82

44.44

42.25

46.56

46.63

47.48

48.35

48.93

50.00

西安

42.41

42.51

41.22

43.21

44.73

44.91

47.51

49.75

50.89

51.16

郑州

40.95

41.32

41.96

42.85

41.49

46.39

47.85

49.99

51.11

53.85

天津

39.34

40.14

43.79

37.95

46.31

46.36

47.05

48.92

50.75

51.57

武汉

39.49

38.89

39.74

31.61

47.16

47.67

47.56

49.06

52.66

55.08

海口

41.50

44.78

42.23

44.90

45.70

48.29

45.51

45.91

45.46

44.38

石家庄

35.88

40.07

40.89

43.32

44.92

46.61

48.00

48.28

49.50

50.51

长春

43.28

44.08

44.60

45.41

44.98

43.33

42.73

45.69

45.48

44.00

银川

41.41

41.40

39.67

40.73

45.23

44.48

46.66

44.73

45.52

32.42

西宁

33.91

36.72

38.84

41.04

44.25

46.19

43.57

44.21

45.58

46.10

南宁

43.99

39.27

35.50

38.03

39.34

38.90

41.05

41.85

39.99

45.46

太原

37.40

38.11

37.71

37.96

35.55

38.28

41.54

40.63

42.95

43.74

重庆

25.30

32.11

35.40

33.66

37.58

48.34

43.86

43.46

44.44

46.38

昆明

41.08

35.38

35.26

33.57

31.25

38.96

44.10

44.19

40.15

43.78

兰州

31.71

37.69

35.22

39.52

38.17

34.11

37.89

38.46

44.65

46.52

哈尔滨

28.60

31.03

32.17

38.11

39.05

40.46

37.47

42.24

43.57

43.01

贵阳

29.75

16.92

34.87

31.67

40.08

39.63

39.75

42.45

43.06

38.35

呼和浩特

28.36

28.85

32.76

33.92

33.38

41.27

42.61

34.86

39.93

38.44

乌鲁木齐

26.27

31.91

30.16

32.14

31.46

34.48

37.71

39.55

45.69

43.34

城市土地精明利用程度评价结果如表3-1所示,表中的排位顺序的依据是10年土地利用精明程度得分的平均值。

3.2土地精明利用程度与城市规模动态关系实证分析

3.2.1 单位根检验

面板数据的格兰杰因果检验要求数据是平稳的或是协整平稳的。为了避免数据出现伪回归,增加分析结果的可靠性,本文实证分析的第一步是单位根检验,面板数据的单位根检验方法主要有LLC,IPS,ADF-Fisher, PP-Fisher等,应用较为广泛。但是可能存在不同的检验方法的检验结果不一致,为了增加结果的科学性,本文一并采用了LLC,IPS,ADF-Fisher, PP-Fisher这四种方法对于原数据序列和一阶差分序列进行检验。检验的结果如表4-1所示。

表 3-2 面板数据单位根检验 (包括趋势和截距项)

变量

LLC

IPS

ADF-Fisher

PP-Fisher

LNS

7.2043 

0.9700 

62.8409 

72.8202 

D(LNS)

-5.1772*** 

-3.5842*** 

129.2240*** 

330.3080*** 

LNU

16.6808 

-0.8744 

90.6398 

107.4200 

D(LNU)

-17.7271*** 

-4.0697*** 

127.4610*** 

248.7820*** 

*,**,***分别表示在 10%, 5% , 1% 水平上显著    

3.2.2协整检验

由于中国35个城市的土地精明程度得分和城市规模在一阶差分后平稳,即变量均为一阶单整,因此可以探讨变量间是否存在长期协整关系。本文采用的协整检验的的方法为Johansen Fisher 方法。Johansen方法的优点是灵活且简单直观,能克服小样本和时间序列的缺陷,结果较为可靠。检验结果如4-2所示,结果表明在1%的显著性水平上拒绝了不存在协整关系的原假设,因此表明变量间存在显著的长期协整关系。

表 3-3 Johansen Fisher 面板数据协整检验

检验假设

Fisher Stat.*

(迹检验)

P

Fisher Stat.*

(最大特征值检验)

P

没有

296.2

0.0000

253

0.0000

至少有一个

163.8

0.0000

163.8

0.0000

    * P值使用渐进卡方分布计算。

既然土地精明利用程度和城市规模之间存在长期的协整关系,那么它们的关系必然受到协整方程的约束,因此本文对面板数据进行协整回归,以明确其协整关系的形式。在实证分析中,本文采用完全修正的最小二乘估计,并分别设置LNS和LNU为自变量,得到如下的估计结果:

表3-4面板数据的完全修正最小二乘估计回归结果 (LNS因变量)

系数

地区

参数值

标准差

t

P

判定系数

全国范围

0.2789

0.0306

9.1241

0.0000

0.7190

东部地区

0.4495

0.0868

5.1779

0.0000

0.5424

中部地区

0.2336

0.0347

6.7326

0.0000

0.5169

西部地区

0.2238

0.0489

4.5752

0.0000

0.7564

表3-4显示的是城市土地精明利用与城市规模的协整方程。回归结果显示城市土地精明利用程度对于城市规模有正向的影响,在全国范围,我国的东、中、西部地区的回归系数分别为0.2789, 0.4495, 0.2336 和 0.2238,且都在1%的水平上显著。

表3-5面板数据的完全修正最小二乘估计回归结果 (LNU为因变量)

系数

地区

参数值

标准差

t

P  

判定系数

全国范围

1.3940

0.1426

9.7715

0.0000

0.9229

东部地区

2.0071

0.2900

6.9207

0.0000

0.9436

中部地区

1.6757

0.3469

4.8309

0.0000

0.6933

西部地区

0.9880

0.1766

5.5945

0.0000

0.9412

表3-5显示的是城市土地精明利用与城市规模的协整方程。回归结果显示城市规模对于城市土地精明利用有正向的影响,在全国范围,我国的东、中、西部地区的回归系数分别为0.2789, 2.0071, 1.6757 和 0.9880,且都在1%的水平上显著。

3.2.3面板数据的格兰杰因果检验

结合表4-3和表4-4的完全修正的最小二乘估计结果,无论是城市规模为因变量还是城市土地精明利用程度作为因变量,回归的系数都是显著,即两者间存在双向的长期稳定的协整关系,即长期的因果关系。由于本文研究的时间跨度为(2003年-2012年)较短,而协整关系考察的是变量之间的长期均衡关系,短期内两个变量可能出现失衡,为了验证检结果的稳定性,需要建立面板误差修正模型(PVECM)来考察两者长期均衡关系的短期修正效应。误差修正模型(ECM) 是考察变量短期波动特征,其前提是变量之间具有协整关系。本文采用的基于误差模型修正的格兰杰因果检验方程为:

         (3)

         (4)

其中 代表一阶差分, 是面板残差,和  是面板数据协整方程中的常数项。短期格兰杰因果关系可以通过差分项系数和 判断,如果差分项系数显著,则代表存在短期格兰杰因果关系,如果误差修正项显著,则代表存在长期的格兰杰因果关系。

表3-6 面板数据的格兰杰因果关系检验

地区

原假设

短期关系

长期关系

参数

t

ECM(-1)

全国范围

LNU不是LNS的格兰杰原因

0.0380***

 

9.2553***

 

LNS不是LNU的格兰杰原因

 

0.2746***

-6.6078***

东部地区

LNU不是LNS的格兰杰原因

-0.0490

 

-6.5208***

 

LNS不是LNU的格兰杰原因

 

-0.2240

1.3679

中部地区

LNU不是LNS的格兰杰原因

-0.2417***

 

-6.5055***

 

LNS不是LNU的格兰杰原因

 

-0.8451***

-0.8689

西部地区

LNU不是LNS的格兰杰原因

0.2490***

 

-7.6991***

 LNS 不是LNU的格兰杰原因

 

0.7637 

2.0773**

注:本文根据AIC准则选取滞后期数。*,**,***分别代表在 10%, 5%, 1% 的水平上显著。

    东部地区,在短期内,城市土地精明利用与城市规模之间不存在因果关系。从长期看,存在着从城市规模到城市土地精明利用的单向因果关系。可能的原因是东部地区的城市发展已经进入了罗斯托模型中的大众消费阶段,这意味着东部地区城市的土地利用水平已进入一个较稳定的阶段,在其他条件不变的情况下,城市规模的变化能在长期影响土地精明利用程度。

 中部地区,在短期内,城市土地精明利用与城市规模之间存在双向因果关系。从长期看,存在着从城市规模到城市土地精明利用的单向因果关系。可能的原因是中部地区的城市正处于快速发展阶段,城市规模和土地利用水平变化在短期内较为显著。

西部地区,在短期内,存在着从城市规模到城市土地精明利用的单向因果关系。从长期看,城市规模与城市土地精明利用程度存在着双向因果关系。可能的原因是西部地区的城市发展与东部和中部地区存在一定的差距。西部地区城市的土地利用水平不断提高,需要扩大城市规模以拉动经济发展。

3.2.4 脉冲响应分析

脉冲响应函数(Impulse response function,IRF)用于衡量来自某个内生变量的随机扰动项的一个标准差冲击对其他变量当前和未来的影响,且能够比较直观地刻画出变量之间的动态交互作用及效应。图中横轴代表追溯期数, 本文当中取10;纵轴表示因变量对个变量的响应大小, 实线表示响应函数曲线, 两条虚线代表两倍标准差的置信带。

图4-1 脉冲响应曲线(西部地区)

图4-2脉冲响应曲线(东部地区) 

图4-3脉冲响应曲线(中部地区)

脉冲响应函数曲线如图4-1至4-3所示,左图为城市土地精明利用程度对城市规模的一个标准差的冲击产生的脉冲响应函数图,右图为城市规模对城市土地精明利用程度的脉冲响应函数图。

西部地区,城市土地精明利用程度对于城市规模的效应在第一期的响应为负值,且在第三期达到正向最大的响应值,第四期达到负向的最大响应值,后趋向于为0。城市规模对土地精明利用程度的影响在第二期达到负向最大响应值,在第三期达到正响应的最大值,并在第六期后趋于0。

    东部地区,城市土地精明利用程度对于城市规模变动很快做出响应,城市规模对土地精明效应在第三期达到正向最大,第四期达到负向最大效应,并且逐年趋向于0。

中部地区,城市土地精明利用程度对于城市规模的效应在第一期为负,第二期达到正向最大效应,在第四期后趋向0。城市规模对土地精明利用程度的影响在所有的响应期内都为正响应,在第二期达到最大,并且逐年趋向于0。  

4.研究结论与政策启示

4.1研究结论

 本文通过探索城市土地精明利用与城市规模的动态关系,旨在利用精明增长理论来指导城市土地的合理利用和城市的长远发展。本文利用2003-2012年中国35个主要城市的面板数据,评价了城市土地的精明利用程度,并在此基础上分析了其与城市规模之间的动态关系,并将研究结果分为东、中、西部地区讨论。研究结论主要如下:

(1)中国的35个主要城市土地精明利用程度都处在中下水平,且区域之间存在较为明显的差异。其中,东部地区城市可能得益于良好的经济基础与区位条件和较高的开放程度,而获得更多的投资发展机会。而西部地区城市开放程度相对不高,吸引外商投资能力较弱且城市基础建设水平较低,虽然现阶段而言与东部与中部等城市存在较大差距,但是发展潜力较高,有较大的发展可能。  

(2)中国城市土地精明利用程度与城市规模存在较稳定的长期均衡关系,而在短期内的关系在东、中、西部地区表现不同。其中,东部地区在短期内,城市土地精明利用与城市规模之间不存在因果关系,且精明利用程度对城市规模的冲击效应为负,反向冲击效应为正。中部地区在短期内,城市土地精明利用与城市规模之间存在双向因果关系,且精明利用程度对城市规模的冲击效应为负,反向为正,与东部地区结果相似。西部地区在短期内,存在从城市规模到城市土地精明利用的单向因果关系。

4.2政策启示

根据实证分析的结果,本文主要得出以下政策思考:

首先,需要依据精明增长理论进一步提升城市的土地利用水平。在城市土地精明利用程度评价中,得分最高的为2012年的深圳,但其得分仅为64.98,这表明城市土地利用的水平有待进一步提高。事实上,因为各种利益冲突,大城市内部的土地再开发和购买的价格都相对过高,导致土地利用水平改善一时陷入僵局。在未来的政策制定中,需要进一步引导和规划大型城市,特别是东部地区城市的地下发展规划,进一步调整产业结构以改善区域的土地利用水平。

其次,合理控制城市规模。在全国范围内,存在着城市规模和城市土地精明利用程度的长期和短期的双向因果关系。这表明城市土地精明利用对于控制城市规模非常有效。且对于不同的地区,需要不同的政策着力点。

最后,进一步加强区域内部和区域之间的城市合作。就区域内部而言,进一步深化区域总体发展战略,推动类似“一带一路”,京津冀地区的协调发展和长江三角洲城市群等国家重大战略。就跨区域合作而言,政策的核心是进一步缩小西部地区与其他地区的发展差距。从本文的分析结果来看,西部地区城市发展仍处于相对较低的水平,且区域的土地利用水平在长期和短期都收到城市规模的显著影响。因此,进一步推进区域之间的合作,促进区域内和区域间的土地利用水平具有重要的现实意义

参考文献

[1] 张镇. 城镇化进程中我国农村土地法律制度研究[D]. 安徽大学, 2014.

[2] Zeng C, Zhang M, Cui J, et al. Monitoring and modeling urban expansion—A spatially explicit and multi-scale perspective[J]. Cities, 2015, 43: 92-103.

[3] Benfield F K, Terris J, Vorsanger N. Solving sprawl: Models of smart growth in communities across America[M]. Island Press, 2003.

[4梁鹤年. 精明增长[J].城市规划,2005,(10) :65-69.

[5] 易华, 易小云, 刘冬华. 精明增长: 低碳经济背景下城市管理的创新模式[J].  第六届 (2011) 中国管理学年会—城市与区域管理分会场论文集, 2011.

[6] 刘海龙. 从无序蔓延到精明增长—美国 “城市增长边界” 概念述评[J]. 城市问题, 

     2005 (3): 67-72.

[7] 王慎敏,杨齐祺,王丹丹,张余庆,刘文琦,杨悉廉. 马鞍山市土地精明利用数量结构研究[J].  中国土地科学,2014,11:74-80.

[8] 张雯 . 美国的“精明增长”发展计划[J]. 现代城市研究,2001,(3) : 19-22.

[9] Zhao P. Sustainable urban expansion and transportation in a growing megacity: Consequences of urban sprawl for mobility on the urban fringe of Beijing[J]. Habitat International, 2010, 34(2): 236-243.

[10] Talen E. Measuring urbanism: Issues in smart growth research[J]. Journal of Urban Design, 2003, 8(3): 303-303.

[11] 曹伟,周生路,吴绍华,王军,檀学勤,张忠金,陈理凤. 城乡土地精明利用测度指标体系构  建与应用研究[J]. 长江流域资源与环境,2013,01:1-7.

[12Sheppard E. City size distributions and spatial economic change[J]. International Regional Science Review, 1982, 7(2): 127-151.

[13Shimoda Y, Asahi T, Taniguchi A, et al. Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model[J]. Energy, 2007, 32(9): 1617-1633.

[14Huang Q, He C, Gao B, et al. Detecting the 20 year city-size dynamics in China with a rank clock approach and DMSP/OLS nighttime data[J]. Landscape and Urban Planning, 2015, 137: 138-148.

[15] 刘琼,欧名豪,盛业旭,郭杰. 不同类型土地财政收入与城市扩张关系分析——基于省际面板数据的协整分析[J]. 中国人口.资源与环境,2014,12:32-37.

[16] Fang S, Gertner G Z, Sun Z, et al. The impact of interactions in spatial simulation of the dynamics of urban sprawl[J]. Landscape and urban planning, 2005, 73(4): 294-306.

[17] 吴次芳, 陆张维, 杨志荣, 等. 中国城镇化与建设用地增长动态关系的计量研究[J].  中国土地科学, 2009, 23(2): 18-23.

[18] Hui E C M, Wu Y, Deng L, et al. Analysis on coupling relationship of urban scale and intensive use of land in China[J]. Cities, 2015, 42: 63-69.

[19] Tugcu C T. Tourism and economic growth nexus revisited: A panel causality analysis for the case of the Mediterranean Region[J]. Tourism Management, 2014, 42: 207-212.

[20] Pesaran M H. A simple panel unit root test in the presence of crosssection dependence[J]. Journal of Applied Econometrics, 2003, 22(2): 265-312.

[21] Hanck C. A meta analytic approach to testing for panel cointegration[J]. Communications in Statistics-Simulation and Computation, 2009, 38(5): 1051-1070.

[22Lu C, Xin Z. Impulse-Response Function Analysis: An application to macroeconomic data of China[J]. D-level Essay in Statistics, 2010.

相关文档
 
通知公告
网站导航

主办:猎豹彩票平台 技术支撑和协办:国土资源部信息中心

Copyright:emoji:1999-2013 All Rights Reserved 版权所有,未经授权,禁止转载

备案序号:京ICP备05047686号  建议使用IE9.0以上浏览器或兼容浏览器,分辨率1024*768